Nachhaltige Zink-Ionen-Batterien für die Energiewende – Forschungsvorhaben hat schnelle industrielle Umsetzung zum Ziel

Stationäre Energiespeicher zur Entlastung des öffentlichen Stromnetzes bei auftretenden Lastspitzen sind ein wichtiger Bestandteil zur Umsetzung der Energiewende. Zink-Ionen-Batterien stehen für diese und andere Anwendungen seit längerem im Fokus – bislang aber ohne kommerziellen Erfolg. Wie eine industrielle Umsetzung gelingen kann, wird nun in dem vom BMBF geförderten Forschungsprojekt »Wässrige Zink-Ionen-Batterien ZIB2« untersucht. Zentrale Entwicklungsziele sind die Verwendung von unkritischen, kostengünstigen Materialien, eine Erhöhung des Wirkungsgrades und Verlängerung der Lebensdauer sowie die Anwendung industrieller Zelldesigns.

Wässrige Zink-Ionen-Batterien (ZIB) werden gerne als grüne Energiespeichertechnologie bezeichnet, da ihre Zell­chemie auf ausreichend verfügbarem Zink basiert. Die Batterien gelten als betriebssicher, umweltfreundlich, wirtschaftlich und es besteht keine Explosions- oder Brandgefahr, da Wasser ein wesentlicher Bestandteil der Zelle ist. Obwohl die ZIB-Systeme bereits eine hohe technologische Reife erreicht haben, konnte sich die Technologie im Vergleich zu der Lithium-Ionen-Batterie (LIB) bislang nicht über breite Anwendungsfelder durchsetzen. Im Zuge der immer größer werdenden Nachfrage nach nachhaltigen Speichertechnologien rücken Alternativ­systeme, wie ZIB jedoch mehr und mehr in den Fokus. Hierbei wird die marktreife Entwicklung der Zink-Ionen-Technologie durch die stetig steigende Nachfrage an Energiespeichern, die zunehmende Rohstoff­knappheit bei etablierten Systemen sowie dem Wunsch nach mehr Umweltfreundlichkeit und Nachhaltigkeit zusätzlich beschleunigt. Somit entwickelt sich die ZIB, gerade auf dem Gebiet der stationären Speicher, zu einer echten Alternative zur dominierenden LIB-Technologie.

Stand der Technik und technische Herausforderungen der Zink-Ionen-Batterien

Moderne Zink-Ionen-Konzepte bestehen zum einen, aus einer positiven Elektrode mit einer Vielzahl an möglichen Materialen wie beispielsweise Manganoxiden, Vanadiumoxiden oder Preußischblau-Analoga (PBA) wie z. B. Kupferhexacyanoferrat und zum anderen aus einer negativen Elektrode aus metallischem Zink. Hierzu kommt die Verwendung von Wasser als Elektrolyt, was die intrinsische Sicherheit des ZIB-Systems immens steigert.

Kosteneffizienz, Wirtschaftlichkeit, Sicherheit und Nachhaltigkeit sind heutzutage die treibenden Kräfte bei der Wahl eines geeigneten Batteriespeichers für stationäre Anwendungen, wie dem Speichern überschüssiger Solar- oder Windenergie. Im Gegensatz zu etablierten Technologien, wie z. B. LIB, erfüllen wässrige Zink-Ionen-Systeme die kritischen Anforderungen des Marktes vollkommen. Dank ihrer hohen Umweltfreundlichkeit, der verwendeten wässrigen, ungiftigen Elektrolyte und Materialien, der hohen spezifischen Leistung, die für Strom­netz­anwendungen unerlässlich ist, sowie der geringen Kosten durch die gute Verfügbarkeit von Zink, stellen ZIB einen attraktiven Ansatz zur Lösung des aktuellen und zukünftigen Energiespeicherproblems dar.

Die im ZIB2 adressierten PBA-Kathodenmaterialien zeichnen sich durch ihre niedrigen Energieverluste sowie durch ihre Fähigkeit schnell Laden und Entladen zu können aus. Dies macht sie für eine Anwendung im stationären Energiespeichersektor besonders relevant, da hier schnell auf eventuelle Lastspitzen im Stromnetz reagiert werden muss, um flächendeckende Stromausfälle vermeiden zu können. Ein weiterer Vorteil von PBA-Kathoden­materialien ist ihre einfache, skalierbare und kostengünstige Synthese. Im Zuge einer raschen Kommerzialisierung können somit entsprechend große Mengen an Elektroden hergestellt und zu zahlreichen Zellen weiterverarbeitet werden. Großer Nachteil der PBA-Systeme war bisher ihre kurze Lebensdauer von ausschließlich 300 Zyklen (Lade- und Entladevorgang). Allerdings konnten Projektpartner des ZIB2-Konsortium durch geschickte Veränderung der jeweiligen PBA-Struktur, die Lebensdauer der PBA-basierten ZIB bereits auf 800 Zyklen steigern. Hierbei werden im laufenden Projekt weitere Strategien verfolgt, um die Leistungsfähigkeit der ZIB-Technologie zu erhöhen und somit einen schnellen Einsatz der entwickelten Zellen in realen Anwendungs­szenarios zu ermöglichen.

Verbesserte Zykluslebensdauer und Effizienz durch neue Materialien und Zellkonzepte

Um die Lebensdauer und den Wirkungsgrad der Zink-Ionen-Batterien weiter zu erhöhen, synthetisieren, charakterisieren und optimieren die Projektpartner neuartige Materialien, sowohl für die Anode, als auch für die Kathode. Zudem werden neue Elektrolytzusammensetzungen hergestellt und ausführlich untersucht. Darüber hinaus sollen die an den Elektroden auftretenden Alterungsmechanismen, welche eine lange Lebensdauer der Batterie­zellen beeinträchtigen können, identifiziert und analysiert werden. So können Anhaltspunkte für eine weitere Optimierung des Zusammenspiels der Elektroden mit dem Elektrolyten gefunden werden. Nach der Identifizierung vielversprechender Materialien und Materialkombinationen sollen verschiedene industrienahe Zell­designs entwickelt, produziert und getestet werden, um das optimale Design für ein finales, serienreifes Produkt zu ermitteln. Hierbei wird auch auf mehrere Herstellungsprozesse eingegangen, wobei z. B. auch das Drucken von ZIB eine Rolle spielen soll. Abschließend unterziehen die Projektbeteiligten alle Ausgangs­materialien, Zellkomponenten sowie Herstellungsprozesse einer ausführlichen ökonomischen und ökologischen Bewertung, um das Marktpotenzial dieser neuartigen Batterietechnologie in Gänze eruieren und die Wirtschaftlichkeit sowie Umweltfreundlichkeit des ZIB-Systems nachweisen zu können.

Hintergrundinformationen

Das ZIB2 Projekt wird von Varta Microbattery GmbH koordiniert, die die Skalierung des Zelldesigns zum Ziel hat und den industrienahen Demonstrator vorantreibt. Die Elektrochemie der Aktivmaterialien wird an der Universität Bremen analysiert und untersucht. Die GRILLO-Werke AG bringt ihr Know-how zu Zinkmaterialien und deren Einsatz als Anoden ein. Das Fraunhofer IFAM stellt die Preußischblau-Analogen Kathodenmaterialien im großen Maß­stab her und entwickelt die Elektrodenformulierungen und -beschichtungen. Die Anpassung der Zn-basierten Elektrolyte wird von E-Lyte Innovations GmbH entwickelt. Battronics GmbH adressiert Alterungs­modelle, Kostenbetrachtung und Wertschöpfung.

Förderung
Bundesministerium für Bildung und Forschung BMBF
Förderkennzeichen: FKZ: 03XP0523
Laufzeit: 2.2023-1.2026
Projektträger: Projektträger Jülich (PtJ)

Projektpartner
Varta Microbattery GmbH (Koordinator)
Universität Bremen Energiespeicher- und Energiewandlersysteme
GRILLO-Werke AG
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM
E-Lyte Innovations GmbH
Battronics GmbH

Weitere Informationen zum Fraunhofer IFAM
www.ifam.fraunhofer.de

Abbildung
© Fraunhofer IFAM, Veröffentlichung frei in Verbindung mit Berichterstattung über
diese Presseinformation.

Download unter:
http://www.ifam.fraunhofer.de/de/Presse/Downloads.html

Aufbau und Entwicklung von Materialien und Komponenten für eine nachhaltige Zink-Ionen Batteriezellfertigung. © Fraunhofer IFAM

Über VARTA AG

Die VARTA AG produziert und vermarktet ein umfassendes Batterie-Portfolio von Mikrobatterien, Haushaltsbatterien, Energiespeichersystemen bis zu kundenspezifischen Batterielösungen für eine Vielzahl von Anwendungen, und setzt als Technologieführer in wichtigen Bereichen die Industriestandards. Als Muttergesellschaft der Gruppe ist sie in die Segmente „Micro Batteries“, „Lithium-Ion CoinPower“, „Consumer Batteries“, „Energy Storage Systems“ und „Sonstige“ unterteilt.
Das Segment „Micro Batteries“ umfasst Mikro- und Hörgerätebatterien, „Lithium-Ion CoinPower“ kleinformatige Lithium-Ionen-Rundzellen für OEM-Anwendungen. „Consumer Batteries“ bildet das Geschäft mit Haushaltsbatterien, Akkus, Ladegeräten, Portable Power (Power Banks) und Leuchten ab. Unter „Energy Storage Systems“ fallen Energiespeicher-Lösungen für vorrangig private, aber auch für kommerzielle Anwendungsbereiche. Das Segment „Sonstige“ umfasst die Geschäftsbereiche „Lithium-Ion Battery Packs“ sowie „Lithium-Ion Large Cells“ (hochleistungsfähige Lithium-Ionen-Rundzellen für industrielle Anwendungen im Automotive- und Non-Automotive-Bereich).
Durch intensive Forschung und Entwicklung setzt VARTA in vielen Bereichen der Lithium-Ionen-Technologie und bei Mikrobatterien weltweite Maßstäbe und ist so anerkannter Innovationsführer in den wichtigen Wachstumsmärkten der Lithium-Ionen-Technologie sowie bei primären Hörgerätebatterien. Der VARTA AG Konzern beschäftigt derzeit rund 4.200 Mitarbeiter. Mit fünf Produktions- und Fertigungsstätten in Europa und Asien sowie Vertriebszentren in Asien, Europa und den USA sind die operativen Tochtergesellschaften der VARTA AG derzeit in über 100 Ländern weltweit tätig.